Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1094720000050010044
Biotechnology and Bioprocess Engineering
2000 Volume.5 No. 1 p.44 ~ p.47
Enhanced proliferation and altered intracellular zinc levels in early- and late-passage mouse aorta smooth muscle cells
Moon Sung-Kwon

Ha Sang-Do
Abstract
Cell growth and DNA synthesis were studied from a cultured early- and late- passage mouse aorta smooth muscle cell (MASMC) because the proliferation of vascular smooth muscle cell (VSMC) is a key factor in development of atherosclerosis. In this study, the cells were cultured in fetal bovine serum (FBS) and stimulated by growth factors such as thrombin and platelet-derived growth factor-BB (PDGF-BB). Compared to the number of early-passage MASMC (passage 3 to 9) the number of late-passage MASMC (passage 30 to 40) in a normal serum state was increased 2 fold at Day 1,3 and 6 in culture, respectively. Incorporation of [3H] thymidine into DNA induced by serum, PDGF and thrombin in late-passage MASMC was greater than those in early-passage MASMC. We also examined whether intracellular zinc levels would be an aging factor or not. The intracellular zinc level in, early- and late-passage MASMC was monitored by using the zinc probe dyeN-(6-methoxy-8-quinolyl)-p-toluenesulfonamide. It is interested that late-passage MASMC increased the intracellular fluorescence level of zinc, more than the early passage MASMC did. The alterations of intracellular zinc level occur concurrently with changes in MASMC proliferation rate during aging. This data suggest that the age-associated changes in zinc concentrations may provide a newin vitro model for the study of smooth muscle cell differentiation.
KEYWORD
atherosclerosis, proliferation, mouse aorta smooth muscle cells (MASMC), zinc, aging
FullTexts / Linksout information
 
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI)